Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Drug Repurposing for Emerging Infectious Diseases and Cancer ; : 423-450, 2023.
Article in English | Scopus | ID: covidwho-20244778

ABSTRACT

The high infection capacity and rapid mutations in coronavirus disease 2019 (COVID-19) has been no stranger to many. The etiological agent that contributed to this global health crisis is by no means the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). COVID-19 is characterized by an episode of immune fluctuations, followed by hyperactivation of inflammatory responses, known as the cytokine storm. The rapid progression of the COVID-19 pandemic calls for new and promising antiviral therapeutics. Repositioning anticancer drugs against the virus is very much explored due to the common similar pathways or targeting structures, opening new windows for many possibilities. As such, the repurposing of zidovudine for Friend leukemia virus and ouabain for Ebola virus are among the successful examples. Other potential FDA-approved anticancer drugs to be repositioned for COVID-19 include imatinib, saracatinib, and homoharringtonine, which have been studied for other coronaviruses in the past. Furthermore, current anticancer drugs like carmofur, carfilzomib, zotatifin, plitidepsin, and toremifene have gained interesting outcomes with respect to SARS-CoV-2. It is well recognized that to achieve viral replication, viruses antagonise or hijack host proteins and signaling pathways to gain productive infection, with SARS-CoV-2 indeed being no exception. This review aims to discuss the drug repositioning approaches concerning previously established anticancer drugs on viruses, especially on SARS-CoV-2. We accentuate this idea with specific examples of how potential anticancer inhibitors can effectively be used against SARS-CoV-2 as well as the limitations and future perspectives of drug repositioning. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023.

2.
J King Saud Univ Sci ; : 101693, 2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-20241762

ABSTRACT

OBJECTIVE: Alternative medicine plays an important role today in searching for therapeutics for cancer and viral infection. So, a scientific validation to characterize constituents in the alternative medicines and therapeutic testing is warranted using modern instrumentation. METHODS: In the present study, an old herbomineral formulation, KanthaRasavillai [KRV], was characterized using UV-vis spectrometry, FT-IR, XRD, SEM, and TEM study. Also, In vitro and in vivo studies were done to evaluate their antiviral and anticancer activity. FT-IR and XRD studies revealed a cocktail of nanoparticles of mercury, magnetic oxide, cinnabar, and arsenic.ResultsBased on SEM, TEM, and XRD report, KRV contains nanoparticles in the size range of 9.1nm to 25.0 nm. FT-IR analysis exposed the presence of several anti-cancerous bioactive compounds.Further in vitro testing against HCV virus proved KRV to inhibit HCV virus a close relative to SARS-CoV-2. MTT assay confirmed the anticancer effect of KRV against Huh-7 and MCF-7 cell lines. CONCLUSION: The anticancer and antiviral properties in the ancient herbomineral drug with a cocktail of metal nanoparticles acknowledge the traditional medical practice as a pioneering approach for present-day ailments. However, the study concludes that the use of KRV depends on safety dosage and genuine preparation as described by ancient saints.

4.
Polyhedron ; : 116485, 2023.
Article in English | ScienceDirect | ID: covidwho-20231228

ABSTRACT

Coordination compounds-based drugs are crucial in targeting various diseases due to their distinct structural order. They also show a significant role in biological systems, including human beings. For example, hemoglobin, a carrier of oxygen transportation in the blood, is a metal complex of Fe (II) ions and is vital for human life. In addition, they have been utilized for treating various diseases associated with human beings due to their excellent anti-bacterial, anti-cancer, and anti-viral potential. The coordination compounds of different metal ions such as platinum (Pt), palladium (Pd), ruthenium (Ru), nickel (Ni), chromium (Cr), silver (Ag), and gold (Au) have been used as anti-cancer drugs. Moreover, the metal complex of chromium, gold, and copper ions exhibited excellent anti-bacterial activity. Additionally, many coordination compounds revealed promising applications against malaria and neurodegenerative conditions like Alzheimer's. Recently, coordination compounds have been utilized as anti-viral drugs to treat coronavirus. In the present review, we have spotlighted the advanced and most significant coordination compounds that exhibit an essential role in medicine.

5.
Current Drug Therapy ; 18(3):247-261, 2023.
Article in English | ProQuest Central | ID: covidwho-2326688

ABSTRACT

Background: Cancer is a leading cause of death for people worldwide, in addition to the rise in mortality rates attributed to the Covid epidemic. This allows scientists to do additional research. Here, we have selected Integerrimide A, cordy heptapeptide, and Oligotetrapeptide as the three cyclic proteins that will be further studied and investigated in this context.Methods: Docking research was carried out using the protein complexes 1FKB and 1YET, downloaded from the PDB database and used in the docking investigations. Cyclopeptides have been reported to bind molecularly to human HSP90 (Heat shock protein) and FK506. It was possible to locate HSP90 in Protein Data Banks 1YET and 1FKB. HSP90 was retrieved from Protein Data Bank 1YET and 1FKB. Based on these findings, it is possible that the anticancer effects of Int A, Cordy, and Oligo substances could be due to their ability to inhibit the mTOR rapamycin binding domain and the HSP90 Geldanamycin binding domain via the mTOR and mTOR chaperone pathways. During the calculation, there were three stages: system development, energy reduction, and molecular dynamics (also known as molecular dynamics). Each of the three compounds demonstrated a binding affinity for mTOR's Rapamycin binding site that ranged from -6.80 to -9.20 Kcal/mol (FKB12).Results: An inhibition constant Ki of 181.05 nM characterized Cordy A with the highest binding affinity (-9.20 Kcal/mol). Among the three tested compounds, Cordy A was selected for MD simulation. HCT116 and B16F10 cell lines were used to test each compound's anticancer efficacy. Doxorubicin was used as a standard drug. The cytotoxic activity of substances Int A, Cordy A, and Oligo on HCT116 cell lines was found to be 77.65 μM, 145.36 μM, and 175.54 μM when compared to Doxorubicin 48.63 μM, similarly utilizing B16F10 cell lines was found to be 68.63 μM, 127.63 μM, and 139.11 μM to Doxorubicin 45.25 μM.Conclusion: Compound Cordy A was more effective than any other cyclic peptides tested in this investigation.

6.
Curr Drug Deliv ; 2023 May 12.
Article in English | MEDLINE | ID: covidwho-2319245

ABSTRACT

The lymphatic system (LS) plays a crucial role in fluid balance, transportation of macromolecules, and immune response. Moreover, LS is a channel for microbial invasion and cancer metastasis. Particularly, solid tumors, including lung, breast, melanoma, and prostate cancers, are metastasized across highways of LS. Subsequently, the fabrication of chimeric lymphatic drug delivery systems (LDDS) is a promising strategy to fight cancer metastasis and control microbial pandemics. In this regard, LDDS, in terms of PEG-nanoscaled lipid carriers, elicited a revolution during the COVID-19 pandemic as cargoes for mRNA vaccines. The drug delivered by the lymphatic pathway escapes first-pass metabolism and enhances the drug's bioavailability. Ample approaches, including synthesis of prodrugs, trigging of chylomicron biosynthesis, and fabrication of nanocarriers, facilitate lymphatic drug delivery. Specifically, nanoscales lipid cargoes have the propensity to lymphatic trafficking. Interestingly, TPGS-engineered nanoscale lipid cargoes enhance lymphatic trafficking, increase tissue permeation, and, specifically, uptake. Moreover, they overcome biological barriers, control biodistribution, and enhance organelles localization. Most anticancer agents are non-specific, have low bioavailability, and induced drug resistance. Therefore, TPGS-engineered nanoscale lipid chimeras improve the therapeutic impact of anticancer agents. This review highlights lymphatic cancer metastasis, nanoscales lipid cargoes as LDDS, and their influence on lymphatic trafficking, besides the methods of LDD studies.

7.
Front Microbiol ; 14: 1142646, 2023.
Article in English | MEDLINE | ID: covidwho-2315256

ABSTRACT

In recent investigations, secondary bacterial infections were found to be strongly related to mortality in COVID-19 patients. In addition, Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria played an important role in the series of bacterial infections that accompany infection in COVID-19. The objective of the present study was to investigate the ability of biosynthesized silver nanoparticles from strawberries (Fragaria ananassa L.) leaf extract without a chemical catalyst to inhibit Gram-negative P. aeruginosa and Gram-positive Staph aureus isolated from COVID-19 patient's sputum. A wide range of measurements was performed on the synthesized AgNPs, including UV-vis, SEM, TEM, EDX, DLS, ζ -potential, XRD, and FTIR. UV-Visible spectral showed the absorbance at the wavelength 398 nm with an increase in the color intensity of the mixture after 8 h passed at the time of preparation confirming the high stability of the FA-AgNPs in the dark at room temperature. SEM and TEM measurements confirmed AgNPs with size ranges of ∼40-∼50 nm, whereas the DLS study confirmed their average hydrodynamic size as ∼53 nm. Furthermore, Ag NPs. EDX analysis showed the presence of the following elements: oxygen (40.46%), and silver (59.54%). Biosynthesized FA-AgNPs (ζ = -17.5 ± 3.1 mV) showed concentration-dependent antimicrobial activity for 48 h in both pathogenic strains. MTT tests showed concentration-dependent and line-specific effects of FA-AgNPs on cancer MCF-7 and normal liver WRL-68 cell cultures. According to the results, synthetic FA-AgNPs obtained through an environmentally friendly biological process are inexpensive and may inhibit the growth of bacteria isolated from COVID-19 patients.

8.
Tetrahedron ; 129 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2303647

ABSTRACT

Historically organometallic compounds have been used to cure certain diseases with limited applications. Although bismuth belongs to the category of heavy metals, many of its derivatives have found applications in modern drug discovery research, mainly because of its low toxicity and higher bioavailability. Being an eco-friendly mild Lewis acid, compounds having bismuth as a central atom are capable of binding several proteins in humans and other species. Bismuth complexes demonstrated antibacterial potential in syphilis, diarrhea, gastritis, and colitis. Apart from antibacterial activities, bismuth compounds exhibited anticancer, antileishmanial, and some extent of antifungal and other medicinal properties. This article discusses major synthetic methods and pharmacological potentials of bismuth complexes exhibiting in vitro activity to significant clinical performance in a systematic and timely manner.Copyright © 2022 Elsevier Ltd

9.
European Journal of Medicinal Chemistry Reports ; 6 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2303478

ABSTRACT

Globally cancer is the second leading cause of death;a drug that can cure cancer with the utmost negligible side effects is still a distant goal. Due to increasing antibiotic resistance, microbial infection remains a grave global health security threat. The ongoing coronavirus pandemic increased the risk of microbial and fungal infection. A new series of 3-(4-methyl-2-arylthiazol-5-yl)-5-aryl-1,2,4-oxadiazole (7a-t) have been synthesized. The structure of synthesized compounds was confirmed by the spectrometric analysis. The newly synthesized compounds were screened for cytotoxic activity against breast cell lines MCF-7 and MDA-MB-231. Against the MCF-7 cell line compounds 7f, 7 g and 7n showed excellent activity with GI50 0.6 muM to <100 nM concentration. Compound 7b showed good activity against MDA-MB-231 cell line with GI50 47 muM. The active derivatives 7b, 7e, 7f, 7 g and 7n were further evaluated for cytotoxicity against the epithelial cell line derived from the human embryonic kidney (HEK 293) and were found nontoxic. The thiazolyl-1,2,4-oxadiazole derivatives were also screened to evaluate theirs in vitro antimicrobial potential against Escherichia coli (NCIM 2574), Proteus mirabilis (NCIM 2388), Bacillus subtilis (NCIM 2063), Staphylococcus albus (NCIM 2178), Candida albicans (NCIM 3100) and Aspergillus niger (ATCC 504). Amongst the 7a-t derivatives, six compounds 7a, 7d, 7f, 7n, 7o, 7r showed good antifungal activity against C. albicans and eight compounds 7c, 7d, 7 g, 7h, 7i, 7k, 7l and 7o showed good activity against A. niger. The potential cytotoxic and antifungal activity suggested that the thiazolyl-1,2,4-oxadiazole derivatives could assist in the development of lead compounds for the treatment of cancer and microbial infections.Copyright © 2022 The Authors

10.
Front Microbiol ; 14: 1113540, 2023.
Article in English | MEDLINE | ID: covidwho-2300349

ABSTRACT

Marine environments and salty inland ecosystems encompass various environmental conditions, such as extremes of temperature, salinity, pH, pressure, altitude, dry conditions, and nutrient scarcity. The extremely halophilic archaea (also called haloarchaea) are a group of microorganisms requiring high salt concentrations (2-6 M NaCl) for optimal growth. Haloarchaea have different metabolic adaptations to withstand these extreme conditions. Among the adaptations, several vesicles, granules, primary and secondary metabolites are produced that are highly significant in biotechnology, such as carotenoids, halocins, enzymes, and granules of polyhydroxyalkanoates (PHAs). Among halophilic enzymes, reductases play a significant role in the textile industry and the degradation of hydrocarbon compounds. Enzymes like dehydrogenases, glycosyl hydrolases, lipases, esterases, and proteases can also be used in several industrial procedures. More recently, several studies stated that carotenoids, gas vacuoles, and liposomes produced by haloarchaea have specific applications in medicine and pharmacy. Additionally, the production of biodegradable and biocompatible polymers by haloarchaea to store carbon makes them potent candidates to be used as cell factories in the industrial production of bioplastics. Furthermore, some haloarchaeal species can synthesize nanoparticles during heavy metal detoxification, thus shedding light on a new approach to producing nanoparticles on a large scale. Recent studies also highlight that exopolysaccharides from haloarchaea can bind the SARS-CoV-2 spike protein. This review explores the potential of haloarchaea in the industry and biotechnology as cellular factories to upscale the production of diverse bioactive compounds.

11.
Foods ; 12(7)2023 Apr 03.
Article in English | MEDLINE | ID: covidwho-2294609

ABSTRACT

Ganoderma lucidum is a medicinal mushroom that has been traditionally used in Chinese medicine for centuries. It has been found to have a wide range of medicinal properties, including antioxidant, anti-inflammatory, and immune-boosting effects. Recent research has focused on the potential benefits of G. lucidum in treating metabolic disorders such as diabetes and obesity, as well as its possible role in preventing and treating infections caused by the coronavirus. Triterpenoids are a major group of bioactive compounds found in G. lucidum, and they have a range of biological activities, including anti-inflammatory and antioxidant properties. These compounds have been found to improve insulin sensitivity and lower blood sugar levels in animal models of diabetes. Additionally, G. lucidum polysaccharides have been found to reduce bodyweight and improve glucose metabolism in animal models of obesity. These polysaccharides can also help to increase the activity of certain white blood cells, which play a critical role in the body's immune response. For coronavirus, some in vitro studies have shown that G. lucidum polysaccharides and triterpenoids have the potential to inhibit coronavirus infection; however, these results have not been validated through clinical trials. Therefore, it would be premature to draw any definitive conclusions about the effectiveness of G. lucidum in preventing or treating coronavirus infections in humans.

12.
Plants (Basel) ; 12(8)2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2306211

ABSTRACT

In total, four new eudesmane-type sesquiterpene glycosides, askoseosides A-D (1-4), and 18 known compounds (5-22) were isolated from the flowers of Aster koraiensis via chromatographic techniques. Chemical structures of the isolated compounds were identified by spectroscopic/spectrometric methods, including NMR and HRESIMS, and the absolute configuration of the new compounds (1 and 2) was performed by electronic circular dichroism (ECD) studies. Further, the anticancer activities of the isolated compounds (1-22) were evaluated using the epidermal growth factor (EGF)-induced as well as the 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cell transformation assay. Among the 22 compounds, compounds 4, 9, 11, 13-15, 17, 18, and 22 significantly inhibited both EGF- and TPA-induced colony growth. In particular, askoseoside D (4, EGF: 57.8%; TPA: 67.1%), apigenin (9, EGF: 88.6%; TPA: 80.2%), apigenin-7-O-ß-d-glucuronopyranoside (14, EGF: 79.2%; TPA: 70.7%), and 1-(3',4'-dihydroxycinnamoyl) cyclopentane-2,3-diol (22, EGF: 60.0%; TPA: 72.1%) showed higher potent activities.

13.
Molecules ; 28(7)2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2291561

ABSTRACT

The pharmacological actions of benzylisoquinoline alkaloids are quite substantial, and have recently attracted much attention. One of the principle benzylisoquinoline alkaloids has been found in the unripe seed capsules of Papaver somniferum L. Although it lacks analgesic effects and is unrelated to the compounds in the morphine class, it is a peripheral vasodilator and has a direct effect on vessels. It is reported to inhibit the cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) phosphodiesterase in smooth muscles, and it has been observed to increase intracellular levels of cAMP and cGMP. It induces coronary, cerebral, and pulmonary artery dilatation and helps to lower cerebral vascular resistance and enhance cerebral blood flow. Current pharmacological research has revealed that papaverine demonstrates a variety of biological activities, including activity against erectile dysfunction, postoperative vasospasms, and pulmonary vasoconstriction, as well as antiviral, cardioprotective, anti-inflammatory, anticancer, neuroprotective, and gestational actions. It was recently demonstrated that papaverine has the potential to control SARS-CoV-2 by preventing its cytopathic effect. These experiments were carried out both in vitro and in vivo and require an extensive understanding of the mechanisms of action. With its multiple mechanisms, papaverine can be considered as a natural compound that is used to develop therapeutic drugs. To validate its applications, additional research is required into its precise therapeutic mechanisms as well as its acute and chronic toxicities. Therefore, the goal of this review is to discuss the major studies and reported clinical studies looking into the pharmacological effects of papaverine and the mechanisms of action underneath these effects. Additionally, it is recommended to conduct further research via significant pharmacodynamic and pharmacokinetic studies.


Subject(s)
Alkaloids , Benzylisoquinolines , COVID-19 , Humans , Papaverine/pharmacology , Opium , SARS-CoV-2 , Alkaloids/pharmacology
14.
Biometals ; 2022 Feb 21.
Article in English | MEDLINE | ID: covidwho-2301610

ABSTRACT

Arsenicals are one of the oldest treatments for a variety of human disorders. Although infamous for its toxicity, arsenic is paradoxically a therapeutic agent that has been used since ancient times for the treatment of multiple diseases. The use of most arsenic-based drugs was abandoned with the discovery of antibiotics in the 1940s, but a few remained in use such as those for the treatment of trypanosomiasis. In the 1970s, arsenic trioxide, the active ingredient in a traditional Chinese medicine, was shown to produce dramatic remission of acute promyelocytic leukemia similar to the effect of all-trans retinoic acid. Since then, there has been a renewed interest in the clinical use of arsenicals. Here the ancient and modern medicinal uses of inorganic and organic arsenicals are reviewed. Included are antimicrobial, antiviral, antiparasitic and anticancer applications. In the face of increasing antibiotic resistance and the emergence of deadly pathogens such as the severe acute respiratory syndrome coronavirus 2, we propose revisiting arsenicals with proven efficacy to combat emerging pathogens. Current advances in science and technology can be employed to design newer arsenical drugs with high therapeutic index. These novel arsenicals can be used in combination with existing drugs or serve as valuable alternatives in the fight against cancer and emerging pathogens. The discovery of the pentavalent arsenic-containing antibiotic arsinothricin, which is effective against multidrug-resistant pathogens, illustrates the future potential of this new class of organoarsenical antibiotics.

15.
Inorganics ; 11(2):60, 2023.
Article in English | ProQuest Central | ID: covidwho-2262259

ABSTRACT

Two tetranuclear [Zn4Cl2(ClQ)6]·2DMF (1) and [Zn4Cl2(ClQ)6(H2O)2]·4DMF (2), as well as three dinuclear [Zn2(ClQ)3(HClQ)3]I3 (3), [Zn2(dClQ)2(H2O)6(SO4)] (4) and [Zn2(dBrQ)2(H2O)6(SO4)] (5), complexes (HClQ = 5-chloro-8-hydroxyquinoline, HdClQ = 5,7-dichloro-8-hydroxyquinoline and HdBrQ = 5,7-dibromo-8-hydroxyquinoline) were prepared as possible anticancer or antimicrobial agents and characterized by IR spectroscopy, elemental analysis and single crystal X-ray structure analysis. The stability of the complexes in solution was verified by NMR spectroscopy. Antiproliferative activity and selectivity of the prepared complexes were studied using in vitro MTT assay against the HeLa, A549, MCF-7, MDA-MB-231, HCT116 and Caco-2 cancer cell lines and on the Cos-7 non-cancerous cell line. The most sensitive to the tested complexes was Caco-2 cell line. Among the tested complexes, complex 3 showed the highest cytotoxicity against all cell lines. Unfortunately, all complexes showed only poor selectivity to normal cells, except for complex 5, which showed a certain level of selectivity. Antibacterial potential was observed for complex 5 only. Moreover, the DNA/BSA binding potential of complexes 1–3 was investigated by UV-vis and fluorescence spectroscopic methods.

16.
Coronaviruses ; 2(10) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2254279

ABSTRACT

Hydroxychloroquine is a chloroquine derivative recognized for treating 'SARS-CoV-2 or COVID-19', among its other uses. It is one of the key drugs used for the treatment of malaria and other respiratory diseases. The drug exhibits multiple pharmacological activities such as anti-malarial, antidiabetic, anticancer, anti-HIV, antifungal, antimicrobial, and antioxidant activities. The coronavirus has recently shown five mutations or genetic change in its structure due to change in the climatic condition (i.e. R207C (nsp 2-27) - Wuhan (China), V378 I (nsp 2-198) - Italy, M2796I (nsp 4-33) - Iran, L3606F (nsp 6-37)-America and V9082F (ORF 7a-74) - Kuwait). There are many preclinical, clinical, theoretical, and experimental evidences that support the effectiveness of HCQ and CQ on patients affected by COVID-19. Based on the evidence currently underway and future research, we will be able to provide better analysis of the role of HCQ and CQ in the COVID-19 transition. It displays several activities related to the respiratory system, and numerous studies have suggested that the compound may be beneficial in protection against diseases such as malaria and lupus erythematosus. The present review represents the role and use of HCQ in the COVID-19 dis-ease. The object of this review study is based on the research evidence obtained from different au-thentic sources. It is currently used in the study of HCQ and CQ for the treatment of coronavirus and various other infections.Copyright © 2021 Bentham Science Publishers.

17.
Advanced Therapeutics ; 2023.
Article in English | EMBASE | ID: covidwho-2285025

ABSTRACT

The remarkable success of messenger RNA vaccines against the ongoing coronavirus-2019 (COVID-19) pandemic renews attention toward nucleic acid therapeutics. While nucleic acid therapy using unmodified DNA or RNA is the primary focus in disease treatment, there is growing need to develop nucleic acid-based small molecules owing to their potential clinical benefits as drugs in terms of cost and scalability. While small molecules targeting protein-protein interactions are known to alter the transcriptional status of a cell, they can result in a transient effect and variation of bio-efficacy among patients. Small molecules targeting DNA and/or RNA are in demand in the precision medicine approach as they have consistent bioactivity among patients. This review details the progress of sequence-specific DNA-binding pyrrole-imidazole polyamides (PIPs) in modulating the transcriptional status of target gene(s) without altering the underlying DNA sequence. Here, the different versions of PIPs are listed, and also, how conjugating them with DNA alkylating agents, epigenetic modulators, and other drugs can improve their clinical utility as targeted transcription therapeutics. Owing to their specificity, functional diversity, and limited toxicity, PIP technology holds enormous promise as frontrunner in small-molecule-based nucleic acid drugs to precisely regulate therapeutically important genes on demand and treat intractable diseases.Copyright © 2023 Wiley-VCH GmbH.

18.
South Asian J Cancer ; 10(1): 32-35, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-2276877

ABSTRACT

Background Coronavirus disease 2019 (COVID-19) pandemic had an overwhelming impact on health care worldwide. Cancer patients represent a subgroup that is vulnerable and is under high risk. It is, therefore, necessary to analyze factors that predict outcomes in these patients so that they can be triaged accordingly to mitigate the effects of COVID-19 on cancer management. To date, the impact of COVID-19 on cancer patients remain largely unknown. Methods Data of 291 cancer patients undergoing active treatment from March 23 to August 15, 2020 were retrospectively reviewed; the incidence, demographic and clinical characteristics, treatment, and outcomes of cancer patients infected by COVID-19 were included in the analysis. Discussion During the index period (March 23-August 15, 2020), 4,494 confirmed cases of COVID-19 were admitted at our institute. In the department of medical oncology out of 578 patients presented to outpatient department, 291 patients were admitted for active treatment. Considering the cancer patients, infection rate was 7.9% (23/291) and mortality 13% (3/23). Median age was 40 years and the majority of patients were male (60%). The most common cancer type was acute lymphoblastic leukemia presented at various stages of treatment. Twenty patients (86.9%) were discharged after full clinical recovery and negative real-time polymerase chain reaction on a nasopharyngeal swab. Anticancer treatment was modified according to the type of cancer under intensive surveillance. Conclusion Although mortality rate in COVID-19 cancer patients is elevated, our results support the feasibility and safety of continuing anticancer treatment during pandemic by endorsing consistent preventive measures, but however should be modified based on the type and prognosis of cancer.

19.
Bioinformation ; 19(2):178, 2023.
Article in English | ProQuest Central | ID: covidwho-2263680

ABSTRACT

Quercetin belongs to the flavonoid family, which is one of the most frequent types of plant phenolics. This flavonoid compound is a natural substance having a number of pharmacological effects, including anticancer and antioxidant capabilities, as well as being a strong inhibitor of various toxicologically important enzymes. We discuss the potential of newly recently synthesized quercetin-based derivatives to inhibit SARS-CoV-2 protein. ADMET analysis indicated that all of the studied compounds had low toxicities and good absorption and solubility properties. The molecular docking results revealed that the propensity for binding to SARS-CoV-2 main protease is extraordinary. The results are remarkable not only for the binding energy values, which outperform several compounds in prior studies, but also for the number of hydrogen bonds formed. Compound 7a was capable of forming 10 strong hydrogen bonds as well as interact to the protein receptor with a binding energy of -7.79 kcal/mol. Therefore, these compounds should be highlighted in further experimental studies in the context of treating SARS-CoV-2 infection and its effects.

20.
Front Oncol ; 13: 1089944, 2023.
Article in English | MEDLINE | ID: covidwho-2276602

ABSTRACT

Introduction: Cancer patients are at risk for serious complications in case of SARS-CoV-2 infection. In these patients SARS-CoV-2 vaccination is strongly recommended, with the preferential use of mRNA vaccines. The antibody response in cancer patients is variable, depending on the type of cancer and antitumoral treatment. In solid tumor patients an antibody response similar to healthy subjects has been confirmed after the second dose. Only few studies explored the duration of immunization after the two doses and the effect of the third dose. Methods: In our study we explored a cohort of 273 solid tumor patients at different stages and treated with different anticancer therapies. Results and Discussion: Our analysis demonstrated that the persistence of the neutralizing antibody and the humoral response after the booster dose of vaccine was not dependent on either the tumor type, the stage or type of anticancer treatment.

SELECTION OF CITATIONS
SEARCH DETAIL